a2 United States Patent

Jeong et al.

US009141498B2

US 9,141,498 B2
Sep. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR VERIFICATION OF

RECONFIGURABLE PROCESSOR

(71) Applicants: SAMSUNG ELECTRONICS CO.,
LTD., Suwon-si (KR); SEOUL
NATIONAL UNIVERSITY R&DB
FOUNDATION, Seoul (KR)

(72) Inventors: Seong-hoon Jeong, Seoul (KR);

Bernhard Egger, Seoul (KR); Daeyong

Shin, Seoul (KR); Changyeon Jo, Seoul

(KR)

(73) Assignees: SAMSUNG ELECTRONICS CO.,
LTD., Suwon-si (KR); SEOUL
NATIONAL UNIVERSITY R&DB
FOUNDATION, Seoul (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 106 days.

@
(22)

Appl. No.: 14/020,061
Filed: Sep. 6,2013

Prior Publication Data
US 2014/0075253 Al Mar. 13, 2014

(65)

(30) Foreign Application Priority Data

Sep.7,2012 (KR) .ooooveiiiiciieee 10-2012-0099526

(51) Int.CL
GOGF 11/22
GOGF 11/263
(52) US.CL
CPC ... GOGF 11/2273 (2013.01); GOGF 11/263
(2013.01); GOG6F 2217/68 (2013.01)

(2006.01)
(2006.01)

{ START

Y

(58) Field of Classification Search
CPC ..ccovvvern GO1R 31/318342; GOG6F 17/5022;
GOG6F 11/2273; GO6F 11/263; GOGF 17/5027,
GOG6F 17/5045; GOGF 17/5054; GOGF 2217/68
USPC ottt 714/741
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,572,666 A 11/1996 Whitman
5,758,123 A * 5/1998 Sanoetal.ccceon... 703/22
6,167,364 A * 12/2000 Stellenberg et al. ... 703/19
6,197,605 B1* 3/2001 Simunicetal. 438/14
6,754,867 B2 6/2004 Ojha et al.
6,871,298 Bl 3/2005 Cavanaugh et al.
6,948,096 B2* 9/2005 Parvathalaetal. 714/30
7,493,542 B2 2/2009 Farkas et al.
7,523,367 B2* 4/2009 Fagernessetal. 714/719
8,868,396 B1* 10/2014 Shirazietal. 703/14
2004/0153928 Al* 8/2004 Rohrbaughetal. 714/738
2007/0192753 Al 8/2007 Lam et al.
2011/0047428 Al* 2/2011 Kiktaetal.coceovnine.. 714/733

* cited by examiner

Primary Examiner — Cynthia Britt
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

A method for verifying an operation of a reconfigurable pro-
cessor is provided. The method includes generating a random
test program using a test description and an architecture
description, executing the generated random test program in
the reconfigurable processor and in a simulator, and then
comparing types of output values in the execution result.

20 Claims, 4 Drawing Sheets

GENERATE TEST DESCRIPTION
AND ARCHITECTURE DESCRIPTION

-~ 210

Y

GENERATE RANDOM TEST PROGRAM USING TEST DESCRIPTION L 230

¥

AND ARCHITECTURE DESCRIPTION

IN THE RECONFIGURABLE PROCESSOR AND

EXECUTE TEST PROGRAM IN RECONFIGURABLE PROCESSOR | 25g
AND SIMULATOR
\
VERIFY OPERATION OF RECONGIFURABLE PROCESSOR
BY COMPARING RESULTS OF EXECUTING THE TEST PROGRAM | 270

EXELUTING THE TEST PROGRAM IN SIMULATOR

.
{(END)

US 9,141,498 B2

Sheet 1 of 4

Sep. 22, 2015

U.S. Patent

FIG. 1

% —
[4ee] P — <
s A .ll -
\ } ...,x
! | |
| | |
| | |
< o 2o L4 o L1l oD ~
_ | i
> e
<
o | | . _
L — . - _ - _
E = . - ..ltc_tc.l L .lvi_.l.l. L tn..lr()(
- o {z. i o | . i
aa) 2 | ! i
< U.,, T ! T | T i
o = SN ORI SUPUE RN S S N
-} & ” i “ T i i
& ¥ | | i i
= o “ | |
. 5 - — | ey i
S T ET R E T
3
L3 T “ T “] “
e SR RSN SN WY SRS R S
N R N
_ | ! i
. o 2 bqd 2 b4 2 b
: A =~ !
i | i
| | |
! | f

U.S. Patent Sep. 22, 2015 Sheet 2 of 4 US 9,141,498 B2

FIG. 2

{ START)
Nosome

¥

JENERATE TEST DESCRIPTION
AND ARCHITECTURE DESCRIPTION

Y
GENERATE RANDOM TEST PROGRAM USING TEST DESCRIPTION

~ 230
AND ARCHITECTURE DESCRIPTION 7
Y
EXECUTE TEST PROGRAM IN RECONFIGURABLE PROCESSOR | 259
AND SIMULATOR
4

VERIFY OPERATION OF RECONGIFURABLE PROCESSOR
BY COMPARING RESULTS OF EXECUTING THE TEST PROGRAM | 54,
IN THE RECONFIGURABLE PROCESSOR AND -
EXELUTING THE TEST PROGRAM IN SIMULATOR

¥
END

US 9,141,498 B2

Sheet 3 of 4

Sep. 22, 2015

U.S. Patent

Z anpotps

‘09

J0110u03
puriado

01 M 71NN

01 4GNS

01 NN

werdord 1501

[a[npatps

S ~-

T AInpayas

[2ANpayds

g

[Anpayag

N 07 'aay 001 M YTV
Jowlaudd R
AeIpatnl N TIo1RIGUSS | [105RIaudd
- : | | uonesodo | uonesado
Ti->Lgns m
o
o ppe m
> =
56
b
it
v
< 011D ¢ 1A - 20 704 INd 604

[2mpayos

¢ DId

sppdwion OJLY

safy
anpenye

™~

I01810usd
1831

US 9,141,498 B2

Sheet 4 of 4

Sep. 22, 2015

U.S. Patent

9

¢

¥

10y woy | ¢

wit | jeoy | wop | wu | ¢

wi | oue |oue | o g | U ||
wt | jeoy | au | g | oem | Q)
pdor ¢Sa1 z3a 15w N4 0Nd spko
oray odLf anfep

F 3

A4

9

¢

17

3

<

dou 11— (3] ppe i |

pr@y—ziggns iy —grippel 0
114 001 3A
ANPaYIg

v DId

US 9,141,498 B2

1
METHOD FOR VERIFICATION OF
RECONFIGURABLE PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority from Korean Patent Appli-
cation No. 10-2012-0099526, filed on Sep. 7, 2012, the entire
disclosure of which is incorporated herein by reference for all
purposes.

BACKGROUND

1. Field

Methods consistent with the following description relate to
verification of reconfigurable processors.

2. Description of the Related Art

A reconfigurable architecture refers to a spatial structure of
a device that will be modified so as to be optimized for a
specific operation.

Performing an operation using only a hardware configura-
tion is not efficient and cannot properly respond to changing
operations of the hardware. By contrast, in the case where an
operation is performed using only a software configuration, it
is possible to modify the software to match changing opera-
tions, but an operation speed would be slower than when only
a hardware configuration is used.

However, a reconfigurable architecture takes the advan-
tages of both hardware and software. In particular, the recon-
figurable architecture is considered useful in digital signal
processing which requires the same operation to be per-
formed repeatedly.

There are many kinds of the reconfigurable architectures. A
case in point is Coarse-Grained Array which consists of func-
tional units connected to each other. In order to match an
operation to be executed, the Coarse-Grained Array changes
the way functional units are connected to each other to
thereby be optimized for the operation.

Atest program is utilized to verify the reconfigurable archi-
tecture. For example, Constraint Satisfaction Problems
(CSPs) may be used as a test program. CSPs are mathematical
problems defined as a set of objects whose state must satisfy
a number of constraints or limitations. CSPs represent the
entities in a problem as a homogeneous collection of finite
constraints over variables, which are solved by constraint
satisfaction methods.

However, related art test programs, such as CSPs, require
both syntactic and semantic knowledge of an instruction.

In addition, while there are a number of functional units
(FUs) in a reconfigurable processor, a CSP has thousands of
constraints. Thus, it may be infeasible to verify the reconfig-
urable processor, which has a set of distinctive instructions,
using a CSP.

SUMMARY

One or more embodiments provide a random test method
and a random test apparatus for verification of a reconfig-
urable processor.

According to an aspect of an exemplary embodiment, there
is provided a method for verification of a reconfigurable
processor, the method including generating a test description
and an architecture description; generating a test program
based on the architecture description and the test description;
executing the test program in a reconfigurable processor;
executing the test program in a simulator; and verifying the
reconfigurable processor by determining whether a type of an

10

15

20

25

30

35

40

45

50

55

60

65

2

output value and an input value in results of executing the test
program in the reconfigurable processor is the same as a type
of an output value and input value in results of executing the
test program in the simulator.

The architecture description may include interconnections
between Functional Units (FUs) and a register file in the
reconfigurable processor, a register location where a specific
type value is stored, and an instruction set of the reconfig-
urable processor.

The generating of the test program may comprise generat-
ing a random test program based on the test description.

The veritying of the reconfigurable processor may include
tracking a value type of the register value and a value type of
an output value of the FUs; and verifying the reconfigurable
processor by comparing the tracked value type of the register
value and the tracked value type of the output value of the
FUs.

The verifying of the reconfigurable processor may com-
prise verifying an operation of the reconfigurable processor
by comparing the tracked value type of the register value and
the tracked value type of the output values of the FUs during
a given cycle.

According to an aspect of another exemplary embodiment,
there is provided a method for verification of a reconfigurable
processor, the method including generating a random test
program based on an architecture description and a test
description; executing the random test program in a reconfig-
urable processor that comprises functional units whose con-
figuration is modifiable in order to optimize the reconfig-
urable processor for a specific operation; executing the
random test program in a simulator comprising at least one
register for simulating the reconfigurable processor; and veri-
fying operation of the reconfigurable processor by determin-
ing whether a type of an output value in results after executing
the random test program in the reconfigurable processor is the
same as a type of an output value in results after executing the
random test program in the simulator.

According to an aspect of another exemplary embodiment,
there is provided a method for verification of a reconfigurable
processor, the method including generating an architecture
description of the reconfigurable processor; generating a test
description for the reconfigurable processor, the test descrip-
tion including constraints set by a user wherein the con-
straints include syntactical information about a plurality of
test instructions but do not designate specific values of oper-
ands for the instructions; generating a random test program
using the architectural description and the test description;
executing the random test program in a reconfigurable pro-
cessor; executing the random test program in a simulator for
simulating the reconfigurable processor; and verifying opera-
tion of the reconfigurable processor by determining whether
a type of an output value in results of executing the random
test program in the reconfigurable processor is the same as a
type of an output value in results of executing the random test
program in the simulator.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the present inventive concept
and are incorporated in and constitute a part of this specifi-
cation, illustrate exemplary embodiments, and together with
the description serve to explain the principles of the prevent
inventive concept.

FIG. 1 is a schematic view illustrating a configuration of a
reconfigurable processor according to an exemplary embodi-
ment;

US 9,141,498 B2

3

FIG. 2 is a flow chart illustrating a method for verification
of a reconfigurable processor according to an exemplary
embodiment;

FIG. 3 is a diagram illustrating an example of generating a
test program for verification of a reconfigurable processor
according to an exemplary embodiment; and

FIG. 4 is a diagram illustrating of an example of verifica-
tion of a reconfigurable processor using a value type tracking
method rather than a value tracking method according to an
exemplary embodiment.

DETAILED DESCRIPTION

The following description is provided to assist the reader in
gaining a comprehensive understanding of the methods,
apparatuses, and/or systems described herein. Accordingly,
various changes, modifications, and equivalents of the meth-
ods, apparatuses, and/or systems described herein will sug-
gest themselves to those of ordinary skill in the art. Also,
descriptions of well-known functions and constructions may
be omitted for increased clarity and conciseness.

Throughout the drawings and the detailed description,
unless otherwise described, the same drawing reference
numerals will be understood to refer to the same elements,
features, and structures. The relative size and depiction of
these elements may be exaggerated for clarity, illustration,
and convenience.

FIG. 1 is a diagram illustrating a configuration of a recon-
figurable processor according to an exemplary embodiment.

Referring to FIG. 1, the reconfigurable processor 100
includes a reconfigurable array 110 and a register file 130.

The reconfigurable array 110 includes a plurality of Func-
tional Units (FUs) 111. The reconfigurable array 110 may
modify a hardware configuration to perform an operation
optimally. For example, the reconfigurable array 110 may
modify the way a plurality of FUs 111 are connected to each
other, according to a type of an operation.

The register file 130 helps the FUs 111 to transfer data to
execute an instruction. The register file 130 may also store the
data. For example, each of the FUs 111 is able to access the
register file 130 to thereby read or write data for executing an
instruction. However, since the reconfigurable array 110 is
reconfigured, the connections between the FUs 111 change.
Thus, an individual FU 111 might not be connected to each of
the other FUs. Thus, depending on the configuration, a given
FU may access the register file 130 via another FU.

Each of the FUs 111 may execute an assigned instruction.
The way the FUs are connected to each other and the opera-
tion order of the FUs may change according to an operation to
be processed.

FIG. 2 is a flow chart illustrating a method for verification
of a reconfigurable processor according to an exemplary
embodiment.

Referring to FIG. 2, the method for verification of a recon-
figurable processor includes generating a test description and
an architecture description in 210, generating a test program
based on the test description and the architecture description
in 230, executing the test program in a reconfigurable proces-
sor and a simulator in 250, and verifying the reconfigurable
processor by comparing the results of executing the test pro-
gram in the reconfigurable processor and the simulator in 290.

A test description includes constraints set by a user, such as
atype and a weight of a test instruction, a test execution cycle
length and a test schedule.

In addition, an architecture description includes intercon-
nection between FUs (i.e., how the FUs are interconnected)
and a register file in a reconfigurable processor, a register

10

15

20

25

30

35

40

45

50

55

60

65

4

location where a specific type value is stored, and an instruc-
tion set of the reconfigurable processor.

A random test program is generated according to a type and
aweight of an instruction set by constraints. That is, a random
test description is generated according to a weight of an
instruction. At this time, a specific input value or output value
of'an operation is not required, but a type of an input value is
set as a constraint.

The veritying of the reconfigurable processor may include
tracking a value type of a register value and a value type of an
FU output value in 270, and verifying the reconfigurable
processor by comparing the tracked value type of the register
value and the tracked value type of an FU output value in 270.
In the exemplary embodiment described herein the types that
are tracked are integers (i.e., int) and floating point number
(i.e., float) types. However, the types are not limited to these,
and the types that may be tracked are not particularly limited.
For example, the types may include integers, floating points,
characters, unsigned integers, doubles, long long, short, etc.

FIG. 3 is a diagram illustrating an example of generating a
test program to verify a reconfigurable processor according to
an exemplary embodiment.

Referring to FIG. 3, if a user sets a type and a weight of an
operation as constraints, a random combination of operations
are generated according to weights of the operations.

In addition, a compiler generates a test program based on
the architecture description. Specifically, the compiler gener-
ates a test program based on interconnection between FUs
and aregister file as well as a register location where a specific
type value is stored.

With reference to FIG. 3, a type of an instruction is deter-
mined to be one of, forexample, ALU, MEM, ADD, SUB and
MUL according to constraints set by a user, and a different
weight is given to each instruction.

If a test schedule is generated, a complier generates a test
program based on the architecture description. Specifically,
an instruction to be executed in each FU, and a type thereof,
may be assigned to each instruction execution cycle, an oper-
and of each instruction may be generated, and an output value
of the instruction may be assigned.

Syntactical knowledge of an instruction is used to generate
atest program, but semantic knowledge is not essential. That
is, a user is not required to designate a specific value to be an
operand of an operation as a constraint.

A register location in which a value of data is stored may be
designated in advance according to a value type of the data.

FIG. 4 is a diagram illustrating an example of verification
of a reconfigurable processor using a value type tracking
method according to an exemplary embodiment.

Referring to FIG. 4, value types of input and output values
are tracked when a test program is being executed in a recon-
figurable processor and a simulator. Specifically, a value type
of a register value and a value type of an FU output value are
compared between the simulator and the reconfigurable pro-
Ccessor.

For example, an integer add operation uses an integer out-
put value and integer input values, and therefore whether an
output value and an input value of an integer operation, per-
formed in the reconfigurable processor and the simulator
during the same cycle, are integers is determined.

An operation of a reconfigurable processor may be verified
by comparing a value type of a register value and a value type
of'an FU output value at cycle intervals or upon termination of
execution of atest program. For example, an integer operation
is performed at cycle 0 with operands of reg 1 and reg 2, and
the result is stored in reg 3. That is, an operation of a recon-
figurable processor may be verified by tracking a value type

US 9,141,498 B2

5

of an output value of FU0 and value types of register values of
reg 1 and reg 2 in a simulator and a reconfigurable processor
at cycle 9 and then comparing the tracked value types.

In other words, it is possible to verify an operation of a
reconfigurable processor using a syntactical knowledge of an
instruction without semantic knowledge.

Referring more specifically to FIG. 4, FIG. 4 shows an
example schedule of operations for FU0 and FU1, along with
an example of the results of the value type tracker.

A result value type of the integer operation “add_i” is
integer. In the example schedule of FIG. 4, it is assumed that
the operation “add_i" has a latency of 1 cycle. A result value
type of the float operation “sub_f is float, and a result value
type of the float operation “add_f” is float. In the example
schedule of FIG. 4, it is assumed that the operations “sub_f”
and “add_f” each has a latency of 2 cycles. In FIG. 4, “nop”
means no operation.

Referring to the example schedule of FIG. 4, FU0 executes
“add_ir3<-rl,r2” at cycle 0. Here, “add_i r3<—r1, r2” means
that the value of register 1 and register 2 are added and the
result is stored in register 3. Since “add_i r3<—rl, r2” has a
latency of 1 cycle, the result is output at cycle 2. After that,
FUO executes “add_f rl<-r3, r1” at cycle 1. Since “add_f
rl<r3, r1” has a latency of 2 cycles, the result is output at
cycle 3. Similarly, FU1 executes “sub_fr2<—r3, r4” atcycle 0
and outputs a result of “sub_{ r2<—r3, r4” at cycle 2.

Turning to the example Value Type Tracker in FIG. 4, the
Value Type Tracker tracks a value type of a register value and
a value type of an FU output value. Thus, based on the above
discussed schedule, the output value type of FUO at cycle 0
and the output value types of FU1 at cycle 0 and cycle 1 are
“n/a,” because the FUO outputs the result of “add_i r3<—r1,
r2” at cycle 1 and the FU1 outputs the result of “sub_fr2<—r3,
r4” at cycle 2. The output value type of FUO at cycle 2 is “n/a”
and the output value of FUO at cycle 3 is “float,” because the
operation “add_f rl1<—r3, r1” has a latency of 2 cycles.

Atcycle 0, the value types of regl, reg2, reg3 and reg4 are

initialized. In this case, they are initialized with integer
(int), int, float, and int, respectively. Atcycle 1, aresult of
“add_i r3<—rl, 12" is stored into reg 3. Thus, the value
type of reg 3 is changed to “int” at cycle 1. At cycle 2, a
result of “sub_fr2<—r3,rd” is stored into reg 2. Thus, the
value type of reg 2 is changed to “float” at cycle 2. At
cycle 3, aresult of “add_frl<—r3,r1”is stored into reg 1.
Therefore, the value type of reg 1 is changed to “float” at
cycle 3, and so on.

As discussed above, the exemplary embodiment shown in
FIG. 4 tracks types of integer and float. However, according to
other exemplary embodiments, different or additional types
may be tracked. The types are not particularly limited, and for
example, may include integer, float, character, unsigned int,
double, long long, short, etc.

According to an exemplary embodiment, a random test
program which does not require semantic knowledge is gen-
erated, thereby reducing user constraints. In addition, such a
random test program may verify a reconfigurable processor
using a value type tracking method, rather than a value track-
ing method.

Exemplary embodiments may be realized using computer-
readable codes in a computer-readable recording medium.
The computer-readable recording medium includes all types
of recording devices which stores computer-system readable
data.

Examples of the computer-readable recording medium
includes a Read Only Memory (ROM), a Random Access
Memory (RAM), a CD-ROM, a magnetic tape, a floppy disk
and an optical data storage device, and the computer readable

40

45

50

55

65

6

recording medium may be realized in a carrier wave form (for
example, transition via the Internet). In addition, the com-
puter-readable recording medium is distributed in a computer
system connected via a network so that computer-readable
codes are stored and executed in a distributed manner. In
addition, functional programs, codes and code segments used
to embody the present inventive concept may be easily antici-
pated by programmers in the technical field of the present
inventive concept.

A number of examples have been described above. Never-
theless, it should be understood that various modifications
may be made. For example, suitable results may be achieved
if the described techniques are performed in a different order
and/or if components in a described system, architecture,
device, or circuit are combined in a different manner and/or
replaced or supplemented by other components or their
equivalents. Accordingly, other implementations are within
the scope of the following claims.

What is claimed is:

1. A method for verification of a reconfigurable processor
having an initial configuration, the method comprising:

generating a test description and an architecture descrip-

tion;

generating a test program based on the architecture

description and the test description;

executing the test program in the reconfigurable processor;

executing the test program in a simulator; and
verifying the reconfigurable processor by determining
whether a type of an output value and an input value in
results of executing the test program in the reconfig-
urable processor is the same as a type of an output value
and input value in results of executing the test program in
the simulator.
2. The method of claim 1, wherein the architecture descrip-
tion comprises interconnection between Functional Units
(FUs) and a register file in the reconfigurable processor, a
register location where a specific type value is stored, and an
instruction set of the reconfigurable processor.
3. The method of claim 1, wherein the test description
comprises a type and a weight of an instruction to be tested, a
test execution cycle length, and a test schedule.
4. The method of claim 3, wherein the generating the test
program comprises generating a random test program based
on the test description.
5. The method of claim 4, wherein the verifying the recon-
figurable processor comprises:
tracking a value type of the register value and a value type
of an output value of functional units (FUs); and

verifying the reconfigurable processor by comparing the
tracked value type of the register value and the tracked
value type of the output value of the FUs.

6. The method of claim 5, wherein the verifying of the
reconfigurable processor comprises verifying an operation of
the reconfigurable processor by comparing the tracked value
type of the register value and the tracked value type of the
output values of the FUs during a given cycle.

7. The method of claim 1, wherein the type of the input and
output values comprises at least an integer type and a float
type.

8. A method for verification of a reconfigurable processor
having an initial configuration, the method comprising:

generating a random test program based on an architecture

description and a test description;

executing the random test program in a reconfigurable

processor that comprises functional units whose con-
figuration is modifiable in order to optimize the recon-
figurable processor for a specific operation;

US 9,141,498 B2

7

executing the random test program in a simulator compris-
ing at least one register for simulating the reconfigurable
processor; and

verifying operation of the reconfigurable processor by

determining whether a type of an output value in results
after executing the random test program in the reconfig-
urable processor is the same as a type of an output value
in results after executing the random test program in the
simulator.

9. The method of claim 8, wherein:

the test description comprises constraints a type and a

weight for each of a plurality of test instructions, and
the random test program is generated according to a type
and a weight of the instructions.
10. The method of claim 9, wherein the architecture
description includes interconnections between the functional
units of the reconfigurable processor and a register file in the
reconfigurable processor, a register location where a specific
type value is stored, and an instruction set of the reconfig-
urable processor.
11. The method of claim 8, wherein the architecture
description includes interconnections between the functional
units of the reconfigurable processor and a register file in the
reconfigurable processor, a register location where a specific
type value is stored, and an instruction set of the reconfig-
urable processor.
12. The method of claim 8, wherein verifying the operation
of the reconfigurable processor comprises:
tracking the type of input values and output values of the
instructions being executed during execution of the ran-
dom test program in the reconfigurable processor;

tracking the type of input values and output values of the
instructions being executed during execution of the ran-
dom test program in the simulator; and

comparing the types of input values and output values

between the reconfigurable processor and the simulator.

13. The method of claim 12, wherein the types of input
values and output values of results after execution of the
random test program are compared.

14. The method of claim 12, wherein types of input values
and output values are compared at a given cycle of execution
of the random test program.

10

15

20

25

30

35

40

8

15. The method of claim 12, wherein a value type of the
register of the simulator and a value type of a functional unit
output value of the reconfigurable processor are tracked and
compared.

16. The method of claim 8, wherein a value type of the
register of the simulator and a value type of a functional unit
output value of the reconfigurable processor are compared.

17. The method of claim 8, wherein the type of the output
values comprises at least an integer type and a float type.

18. A method for verification of a reconfigurable processor
having an initial configuration, the method comprising:

generating an architecture description of the reconfig-

urable processor;

generating a test description for the reconfigurable proces-

sor, the test description including constraints set by a
user, wherein the constraints include syntactical infor-
mation about a plurality of test instructions but do not
designate specific values of operands for the instruc-
tions;

generating a random test program using the architectural

description and the test description;

executing the random test program in the reconfigurable

processor;

executing the random test program in a simulator for simu-

lating the reconfigurable processor; and

verifying operation of the reconfigurable processor by

determining whether a type of an output value in results
of executing the random test program in the reconfig-
urable processor is the same as a type of an output value
in results of executing the random test program in the
simulator.

19. The method of claim 18, wherein the test description
includes constraints set by a user, the constraints comprising
a type and a weight of a plurality of test instructions, a test
execution cycle length and a test schedule, and

the architectural description includes interconnections

between function unit of the reconfigurable processor
and aregister file in a reconfigurable processor, a register
location where a specific type value is stored, and an
instruction set of the reconfigurable processor.

20. The method of claim 18, wherein the type of the output
values comprises at least an integer type and a float type.

#* #* #* #* #*

